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Primitive Concepts of Number and the Developing Human Brain
Alyssa J. Kersey and Jessica F. Cantlon

Department of Brain and Cognitive Sciences, University of Rochester

ABSTRACT
Counting is an evolutionarily recent cultural invention of the human species. In
order for humans to have conceived of counting in the first place, certain
representational and logical abilities must have already been in place. The
focus of this article is the origins and nature of those fundamental mechanisms
that promoted the emergence of the human number concept. Five claims are
presented that support an evolutionary view of numerical development: (1)
number is an abstract concept with an innate basis in humans; (2) maturational
processes constrain the development of humans’ numerical representations
between infancy and adulthood; (3) there is evolutionary continuity in the
neural processes of numerical cognition in primates; (4) primitive logical
abilities support verbal counting development in humans; and (5) primitive
neural processes provide the foundation for symbolic numerical development
in the human brain. We support these claims by examining current evidence
from animal cognition, child development, and human brain function. The
data show that at the basis of human numerical concepts are primitive
perceptual and logical mechanisms that have evolutionary homologs in
other primates and form the basis of numerical development in the human
brain. In the final section of this article, we discuss some hypotheses for what
makes human numerical reasoning unique by drawing on evidence from
human and non-human primate neuroimaging research.

Number is an abstract concept with an innate basis in humans

Number is an abstract quantitative representation that cuts across sensory modalities and space–and-time.
There are many types of quantitative representations that could be used to compare sets of objects. For
example, cumulative surface area, density, duration, and rate are all often correlated with numerosity in
nature. Sets that have a greater number of objects are often more dense, have a higher rate or greater
duration, and take up more space or surface area. Some have argued that these dimensions are the earliest
building blocks of quantitative representation in human infants (Gebuis & Reynvoet, 2011; Lourenco &
Longo, 2011; Mix, Huttenlocher, & Levine, 2002a; Walsh, 2003). However, many of these non-numerical
dimensions are limited to representation by only a subset of sensory modalities. For example, one cannot
hear the cumulative surface area of a set of objects. In contrast, numerosity is a quantitative dimension that
can be represented in any sensory modality. Unlike rate (temporal) or density (spatial), a numerical sum
can be calculated from objects distributed across space and time. The flexibility that the numerical
dimension affords in terms of cognitive processing could make it an optimal dimension for comparing
sets of objects under naturalistic conditions such as occlusion, interruption, and integration of sets across
the senses, space, and time. Number is, in principle, a truly amodal concept—akin to dimensions such as
spatial distance or temporal duration.
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There is evidence that an amodal concept of number is a fundamental component of human and
animal cognition (Spelke, 2000; Spelke & Kinzler, 2007). Crossmodal numerical representation has
been observed in non-human animals such as rats and monkeys (Jordan, MacLean, & Brannon,
2008; Meck & Church, 1984). In one study, rats were trained to press one lever after hearing 2 tones
or seeing 2 lights and a second lever after hearing 4 tones or seeing 4 lights. When those rats were
subsequently tested with a compound sequence of 2 tones and 2 lights, they spontaneously summed
the items and pressed the lever associated with 4 items (Church & Meck, 1984). Jordan et al. (2008)
showed that monkeys can numerically match and tally sets across modalities by comparing and
summing auditory and visual sets of 1–9 items. Monkeys who were presented with mixed sequences
of visual shapes and auditory tones successfully chose the sum of the items from two choice arrays.
Importantly, the study showed that the monkeys’ representations were truly numerical and not based
on alternative dimensions such as rate, duration, density, or surface area since those cues were
uncorrelated between the sample stimuli and targets. The data from rats and monkeys conclusively
show that non-human animals engage crossmodal representations during numerical judgments.

Human infants also show sensitivity to numerical values across modalities. In one study
(Kobayashi, Hiraki, & Hasegawa, 2005), 6-month-old infants were familiarized with a display of
two and three dolls sequentially impacting a surface and emitting a tone at impact. Infants were then
tested with trials in which an occluder blocked the infant’s view, and the infant only heard the
impact sounds of two or three tones. Then the occluder was removed and two or three dolls were
revealed. Infants looked significantly longer at the numerically non-matching outcomes, indicating
they formed an expectation of the number objects they should see based on the number of tones they
heard. In another looking time study, (Jordan & Brannon, 2006) showed that 7-month-old human
infants and rhesus monkeys spontaneously match the number of entities they see with the number of
events they hear when multiple individuals are shown vocalizing simultaneously. Izard, Sann, Spelke,
and Streri (2009) showed that newborn human infants look longer at visual arrays that displayed the
same number of items as sounds they heard in an auditory sequence compared to arrays with
different numerosities—showing that they spontaneously associate the number of sounds they hear
with the number of visual objects they see. Representations of alternative dimensions such as surface
area or duration are unlikely to explain newborns’ crossmodal number discrimination because that
would require a priori associations among the values of different properties (e.g., density and rate)
across modalities at birth.

In the crossmodal discrimination study by Izard and colleagues, the newborns looked longer at the
congruent auditory-visual sets for 4 vs. 12 items and 6 vs. 18 items (3:1 ratio), but only marginally
discriminated between 4 vs. 8 items (2:1 ratio). One important feature of primitive nonverbal
numerical representations, and what distinguishes them from the precise representations of symbolic
counting, is that they are analog approximations of numerical value (Xu & Spelke, 2000). In studies
with infants and animals, discrimination of numerical values is constrained by Weber’s law—as the
ratio between the to-be-compared numerical values narrows, infants’ and animals’ discrimination of
the values declines. Thus, infants and animals will perform better at discriminating numerosity at a
wide ratio, 4 vs. 12 items and 6 vs. 18 items (3:1 ratio), than 4 vs. 8 items, a narrow ratio (2:1 ratio), and
this prediction has been proven many times across studies with infants and animals (see Agrillo &
Beran, 2013; Cantrell & Smith, 2013; for reviews). Ratio-dependent discrimination shows that infants
and animals are only approximating numerical values and not counting precisely (Gallistel & Gelman,
1992; Wynn, 1990, 1992).

Older children and adults show ratio-dependent numerical performance when they are prevented
from verbally counting (Barth, Kanwisher, & Spelke, 2003; Barth, La Mont, Lipton, & Spelke, 2005;
Cantlon & Brannon, 2006; Cordes, Gelman, Gallistel, & Whalen, 2001; Halberda & Feigenson, 2008).
When adults and 5-year-old children rapidly sum items across modalities without verbally counting
they show the signature of Weber’s law in their performance, just as is observed in nonverbal
animals and human infants (Barth et al., 2003, 2005). Children and adults are less accurate at
numerically discriminating sets of objects when the numerical ratio is narrow (e.g., 3:4) vs. wide (e.g.,
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1:4). These findings show that even after symbolic counting develops, humans retain a fundamental
ability to approximate numerical quantities across modalities. Ratio-dependent discrimination of
numerical values occurs during nonverbal enumeration within- and between-modalities and is
widespread across many animal species, and stages of human development (see Agrillo & Beran,
2013 for a review; Barnard et al., 2013; Beran, Decker, Schwartz, & Schultz, 2011; Cantlon &
Brannon, 2006; Feigenson, Dehaene, & Spelke, 2004; Ferrigno, Hughes, & Cantlon, 2015; Hanus &
Call, 2007; McCrink & Wynn, 2004; Rugani, Vallortigara, & Regolin, 2013).

Together, the data from human infants, children, and non-human animals show that numerical
cognition has an innate and evolutionary basis in humans. The nature of the innate number concept
is an abstract analog intensity representation that noisily approximates numerical values and is
ratio-dependent in its implementation. This nonverbal representation of number in humans is
referred to as “core knowledge” of number (Carey & Spelke, 1994; Spelke, 2000; Spelke & Kinzler,
2007).

Maturation constrains the early development of numerical representations

The dominant view of nonverbal numerical development is that there is continuity between infants’
and children’s core knowledge of number and adults’ nonverbal numerical estimation abilities (e.g.,
Brannon, 2006; Dehaene, Molko, Cohen, & Wilson, 2004). As described, human infancy researchers
have revealed nonverbal quantitative sensitivities in humans within the first year of life using implicit
measures such as looking time (e.g., Cordes & Brannon, 2008; Izard et al., 2009; Lipton & Spelke,
2003; Xu & Spelke, 2000). By 3 years of age, children can perform explicit numerical tasks such as
choosing the numerical match for a set of 8 dots from two choice arrays (Brannon & van de Walle,
2001; Cantlon, Fink, Safford, & Brannon, 2007; Huntley-Fenner, 2001; Huntley-Fenner & Cannon,
2000). The numerical representations that children use to make nonverbal quantitative choices are
similar to those of human infants in that they are approximate and ratio-dependent. Children’s
discrimination of numerical quantity gradually improves between the ages of 3 years and adulthood
(Halberda & Feigenson, 2008; Huntley-Fenner, 2001; Huntley-Fenner & Cannon, 2000). However,
there is a gap in our understanding of nonverbal numerical development during the period from
12 months to 3 years (Brannon & van de Walle, 2001; Mix, Huttenlocher, & Levine, 2002b; Sella,
Berteletti, Lucangeli, & Zorzi, 2016). One- to two-year-old children often fail explicit numerical
comparison tasks with values larger than 3 or 4 items (Feigenson & Carey, 2005). These failures are a
bit mysterious because it is unclear why 1- to 2-year-old children fail to make quantitative judgments
over stimuli that infants can discriminate in looking time tasks. For example, 6- to 9-month-old
infants are able to discriminate sets of 1 vs. 4, 2 vs. 4, and 5 vs. 10 in looking time tasks (Cordes &
Brannon, 2008; McCrink & Wynn, 2004) whereas 1-year-olds often fail to crawl to the larger set of
crackers in contrasts of 1 vs. 4, 2 vs. 4, and 5 vs. 10 (Feigenson & Carey, 2005; Feigenson, Carey, &
Hauser, 2002; vanMarle & Wynn, 2011). Other researchers have found that 2- to 3-year-old
children’s abilities to make numerosity-based choices are limited and depend on the emergence of
other cognitive skills (Brannon & van de Walle, 2001; Michie, 1985; Mix, 1999).

One explanation of toddler’s numerical approximation failures is that during this age they use a
mental model of set representations that is limited to only a few items (“object files”). Feigenson &
Carey (2003, 2005) argue that toddlers represent sets as a collection of individual objects via an object
tracking mechanism. The object file mental model has a capacity limit of around 4 items, which limits
children to numerical comparisons of only small sets. This object-based representation causes toddlers
to fail at large number discriminations that infants and older children succeed at making with
sequentially and simultaneously presented sets. Thus, one explanation of 1- to 2-year-olds’ unique
failures at making numerical discriminations in explicit choice tasks is that they use a mental model of
object sets that interferes with large number representation.

A second possibility is that that infants’ successes and failures could be related to the regularity of
quantitative information in the stimuli. Cantrell, Boyer, Cordes, and Smith (2015) found that infants
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are better able to make numerical discriminations in looking time tasks when they are shown less
variable exemplars of a given numerosity (e.g., narrow distribution of cumulative area and contour)
compared to more variable exemplars (wide distribution of area and contour). They argue that signal
clarity influences infants’ sensitivity to number across tasks, and this explanation accounts for some
patterns in the literature (Cantrell & Smith, 2013). However, the ‘signal clarity hypothesis’ does not
explain why younger infants succeed with looking time but older children fail with explicit choice at
comparisons of 1 vs. 4 and 2 vs. 4 when non-numerical dimensions are fully correlated with
numerosity.

Another explanation of toddlers’ failures at large number discrimination, potentially non-exclusive with
the object file and signal clarity explanations, is that children’s perceptual, attention, decision, and motor
processes are constrained by maturational factors that must unfold before children can express accurate
numerical choices. The main evidence that infants discriminate numerosities comes from looking time
studies. Infants’ looking behaviors might be driven by implicit exploratory processes that are distinct from
those underlying the explicit decisions required in choice tasks. It is unclear how the representations that
infants use to discriminate large numerosities in looking time studies become the numerical representations
that 3- and 4-year-old children use to select the larger numerosity from a set of options. Infants and toddlers
undergo significant changes in their abilities to integrate perceptual, attention, and decision processes with
motor control processes during the first years of life (Diamond, 1990, 1991; Gomez, 2005; Smith & Thelen,
2003). The maturation of cognitive systems could play a role in the emergence of numerical choice in
toddlers.

Research with infant monkeys supports the idea that maturational factors could play an important
role in human numerical development. In the domains of physical growth, motor behavior, and
perceptual development, monkeys mature much faster than humans. For instance, human infants
begin to crawl around 9–10 months of age whereas monkey infants begin to crawl within 1 month of
birth (Hinde & Spencer-Booth, 1967). Similarly, in terms of perceptual development, infant monkeys
begin reaching for occluded objects by 4 months of age, where as human infants do not develop this
ability until 9–12 months of age, a rate that is 2–3 times slower than infant monkeys (Diamond,
1990, 1991; Gomez, 2005). If quantitative development in human and non-human primates is
constrained by the unfolding of genetically predetermined abilities, or maturation, then monkey
infants should engage in quantitative judgments earlier than human infants. Alternatively, if the
development of spontaneous quantitative reasoning of monkeys is related to learning then infant
monkeys should perform worse than adult monkeys and learning rates should differ between age
groups.

Recent data from infant monkeys show that numerical abilities develop rapidly in non-human
primates. Infant monkeys make accurate quantity choices and the spontaneous quantitative sensi-
tivity of infant monkeys is equal to that of their adult groupmates. Ferrigno et al. (2015) tested
untrained infant and adult monkeys on a food quantity choice task and measured their first trial
accuracy across a range of numerical comparisons from 1–9 items. The one-year-old infant monkeys
performed above chance and at accuracy levels equivalent to the adult animals in their group
(Figure 1; Ferrigno et al., 2015). Further, learning rates, the changes in accuracy over time, did
not differ between infant and adult animals. Finally, infant monkeys accurately performed this
numerical task with large numerical values at 1 year of age whereas human children at the same
age often fail. One-year-old human children often fail to choose the larger of 1 vs. 4 and 2 vs. 4 treats
and only show reliable success on this explicit choice task at a later age. The Weber fractions of
1-year-old monkeys (w = .71) were comparable to those of a 2- to 3-year-old human child (3-year-
old mean w = .53 in Halberda & Feigenson, 2008). The results show that monkeys develop
quantitative reasoning abilities 2 to 3 times faster than humans, which is similar to the accelerated
rate of aspects of their perceptual and motor development regarded as genetically constrained
(Diamond, 1990, 1991). Together, these findings implicate a maturational contribution to the
development of numerical cognition in monkeys and humans. The development of numerical choice
behavior appears to be yoked to the species’ rate of maturation.
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Evidence that maturation affects numerical cognition does not imply that learning cannot alter
quantitative reasoning. For instance, with training, adult monkeys’ performance can improve to that
of 4- to 5-year-old human children (Cantlon & Brannon, 2006). The data from infant monkeys
highlight that quantitative reasoning is natural in primates, and a primary constraint on early
numerical development is species’ rate of maturation. The relatively slow pace of the development
of explicit numerical judgment in human children is not necessarily caused by the need for extensive
learning, as suggested by some researchers (Mix, 2002). Maturational factors could cause human
children’s difficulties comparing large quantities during their first two years (Ferrigno et al., 2015).
Together the data from infants of both species suggest continuity in the development of numerical
representation from infancy to adulthood—nonverbal numerical cognition has a strong innate basis
and its subsequent development into a system of explicit choice is constrained by genetic maturation.

Evolutionary continuity in neural mechanisms

If numerical cognition has an innate basis in humans, derived from evolution, then there should be
continuity in the neural mechanisms underlying numerical cognition between humans and other
animals. Animals as different as bees, ants, various types of fish, salamanders, chickens, pigeons,
crows, raccoons, rats, lions, bears, elephants, and primates make quantity discriminations (see
Agrillo & Beran, 2013 for review). The many examples of quantitative and numerical reasoning in
nature raise questions about whether those behaviors arise from a common evolutionary origin or
are instead cases of convergent evolution. Comparisons of the neural structures that underlie
numerical behaviors could be informative.

In monkeys who are trained tomatch visual arrays of dots based on number, single neurons along the
intraparietal sulcus (IPS) will respond maximally to a preferred numerical value and their firing rate
decreases as the number that is presented gets numerically farther from that preferred value (Figure 2;
Nieder & Miller, 2004). In addition, neurons tuned to larger numerical values exhibit noisier responses
than neurons tuned to smaller values (Nieder & Merten, 2007). That is, neurons tuned to larger
numerical values have a coarser response and respond to a wider set of adjacent numerical values than

Figure 1. Adult and infant monkeys’ accuracy as a function of quantity ratio (smaller quantity/larger quantity). Solid lines (adults)
and dotted lines (infants) represent fits predicted by a model of Weber’s law (Goodness-of-fit: Adults: R2 = .76, p < .01, Infants:
R2 = .50, p < .05). Error bars represent the SE of the mean. From (Ferrigno et al., 2015).
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neurons tuned to smaller values. The finding that neural responses in the IPS are modulated by both
numerical distance and numerical magnitude represents a neural version of the numerical ratio effect, or
Weber’s law. A similar pattern of ratio-dependent numerical tuning has been observed with fMRI in the
adult human IPS (Figure 2; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). During passive viewing
adaptation, wherein adults show decreasing neural responses to a constant stimulus, the IPS responds
more strongly to sudden changes in number (over shape) and the amount of numerical change
modulates the change in the neural response in a ratio-dependent manner.

One study showed that the same neural region selective for numerical processing in monkeys and adult
humans (the IPS) is selective for numerical value (over shape) in 4-year-old children (Figure 2; Cantlon,
Brannon, Carter, & Pelphrey, 2006). This suggests that numerical processing in the IPS is a developmentally
primitive neural phenomenon. EEG andNIRS studies with infants do not offer the same spatial localization
capacity as fMRI but those studies are also consistent with this conclusion (Hyde, Boas, Blair, & Carey,
2010; Hyde & Spelke, 2011; Izard, Dehaene-Lambertz, & Dehaene, 2008; Libertus, Brannon, & Woldorff,
2011; Libertus, Pruitt, Woldorff, & Brannon, 2009). They suggest that by as early as 3 months of age infants
show number-specific parietal responses to nonverbal stimuli such as sets of objects. fMRI studies with
older children confirm that nonsymbolic numerical representations maintain a connection with the neural
processes of the IPS throughout development (Ansari & Dhital, 2006; Cantlon et al., 2009; Lussier &
Cantlon, 2016). These findings implicate early-developing and homologous neural mechanisms in the IPS
between humans and monkeys as a source for numerical processing. Evidence of functional homologies
between the human and monkey IPS from other cognitive domains also support the claim of neural
homology in numerical processing in primates (Orban et al., 2006).

Although there is no homologous structure to the IPS in the avian brain, neural recordings from
crows reveal similar neural signatures of approximate number representation within an analogous
structure to the primate neocortex: the nidopallium caudolaterale (Figure 3; Ditz & Nieder, 2015;
Güntürkün, 2005). Neurons within the nidopallium caudolaterale fire selectively for specific numerical
values and their firing rate decreases as the number presented gets farther from their preferred value. This
neural firing pattern is similar to neural responses in primates, however the underlying neural structure is
functionally and anatomically distinct (Ditz & Nieder, 2015). These findings from birds show that there
are at least two highly similar yet independently evolved solutions to numerical representation in the
animal kingdom (Nieder, 2016). It is thus possible that cognitive and neural processes accomplish
numerical representation with similar mechanisms, but evolved independently. The numerical abilities
of fish, insects, birds, reptiles, amphibians, and some mammals may also show similar numerical
processes that evolved independently from humans and other primates. A proper phylogenetic analysis
of the evolution of numerical abilities could provide additional insights as to whether other species
evolved numerical abilities from common or independent origins (Northcutt & Kaas, 1995; Sereno &

Figure 2. Monkeys, human adults, and human children exhibit similar activation in the intraparietal sulcus (IPS) during analog
numerical processing. From Cantlon (2012).
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Tootell, 2005). So far, the evidence suggests evolutionary continuity between the numerical processes of
humans and other primates, and analogous numerical processes in avian species.

Primitive numerical logic supports human counting development

Unlike nonhuman primates and other animals, humans eventually develop the unique ability to
represent numbers exactly with symbols such as words and numerals. In contrast to the nonverbal
number system, which represents numerical quantity imprecisely, a symbolic number is represented
with complete precision. An open question is how and when representations of symbolic number are
supported by the primitive, nonverbal, approximate number system.

The symbol grounding problem in numerical cognition explores how we attach meaning to
arbitrary shapes or sounds with values. For instance, the numeral “4” and the spoken word “four”
are in no way intuitively suggestive of a particular quantity and thus, must be grounded in a more
fundamental type of numerical representation. This raises the question of how humans develop the
ability to map symbolic numbers onto nonverbal representations. To answer this question, devel-
opmental researchers have studied the changes in numerical cognition that occur during early
childhood when children are learning to count and to link number words to particular quantities.

Counting acquisition is a lengthy and difficult process for children. They begin by learning to rote
recite the count list, but it is not until months or years later that children begin to understand that the
words in the count list refer to specific, exact quantities (Le Corre & Carey, 2007; Wynn, 1990, 1992).
For instance, even if a child can recite the count list to 10, until they are approximately 2.5 years old,
they may not correctly produce one item when asked for just one item. Even then, despite producing
one item when asked for one, they will continue to produce a random handful of objects for any
quantity larger than 1. Over the next 6–12 months, children go through stages in which they are able to
correctly produce 2 objects, then 3 objects, and then 4 objects. After this point, when children can
correctly produce 5 or 6 objects, they are labeled as Cardinality Principle (CP)-knowers, meaning that
they understand that when counting a set of items, the number word that they end on represents the
number of items in the set (Gelman & Gallistel, 1978; Wynn, 1990, 1992). This principle allows
children to understand that number words beyond the highest number they can count to (i.e., beyond
their count list) refer to unique quantities, that stirring or shaking a large set of items does not change

Figure 3. The neural representation of number in corvids is observed in the nidopallium caudolaterale, a region that has no clear
homolog in primates. From (Nieder, 2016).

LANGUAGE LEARNING AND DEVELOPMENT 197



the cardinality of the set, that removing one item or adding an item changes the cardinality of the set,
and that returning the same or a different item after removing one item does not change the set’s
cardinality (Lipton & Spelke, 2006).

Although there is some debate as to how representations for the first four number words are
grounded (see Le Corre & Carey, 2007; Odic, Le Corre, & Halberda, 2015), researchers agree that
number words are, at some point in development, mapped to approximate numerical representa-
tions, potentially via structural alignment (Carey, 2004, 2009; Gentner, 2010). One debate in the field
concerns when this mapping occurs. Older work suggests that the mapping between symbolic
number and nonsymbolic number does not occur until after children learn to count. Le Corre
and Carey (2007) found that children who were not yet CP-knowers, and even some children who
were CP-knowers, could not accurately apply a number word to label large arrays of dots. That is,
they applied similar verbal estimates for arrays of 5 dots and arrays of 9 dots rather than using
smaller number words for the 5-dot arrays and larger number words for the 9-dot arrays. From this
they concluded that children do not map number words to approximate number representations
until sometime after acquiring the counting principles. Instead, they argued that early counters rely
on “object file” representations of small sets to map the meanings of the first few count words. A
related study found that children could correctly give an approximate number label for quantities
within their count list, but unskilled counters, who could not correctly transition between decade
changes (e.g., could not produce 80 after 77, 78, 79), could not make correct approximations beyond
numbers in their count list (Lipton & Spelke, 2005). This further suggests that children do not map
approximate quantities to number words until they are proficient at counting (Lee & Sarnecka,
2011).

In contrast, other newer work finds that when children are asked to physically produce a specific
number of items, even children who have not yet mastered the cardinality principle can approxi-
mately provide the correct number of items and tend to give more items for larger number words
(Gunderson, Spaepen, & Levine, 2015; Wagner & Johnson, 2011). This suggests that children do map
symbolic to nonsymbolic representations prior to mastering the counting principles. One possibility
that might reconcile conflicting accounts is that mapping is asymmetric, that is, children may learn
to map from quantities to number words later than mapping from number words to quantities. To
test this prediction, Odic et al. (2015) tested the same group of children on their ability to map both
quantities to number words and number words to quantities. They found that children were unable
to map quantities to number words until after they had acquired the counting principles, but could
map number words to quantities prior to counting. Thus, they suggest that mapping between the
approximate number system and exact, symbolic number might be asymmetric—mapping from
exact to approximate number could develop earlier than the mapping from approximate to exact
representations (see also Mundy & Gilmore, 2009; Opfer, Thompson, & Furlong, 2010). However,
one important consideration is that Gelman (1993) showed that task competence is a critical factor
in eliciting systematic counting behavior in young children. Therefore, some of the inconsistencies in
the literature may be due to differences in task demands rather than asymmetries.

Most research on counting development has focused on this issue of how the mappings between
representations in the nonsymbolic and symbolic number systems emerge, and whether those map-
pings help children learn to count. As discussed above, there is a debate over this issue and it is still
unclear whether the mapping of count words to nonverbal numerosity representations plays a causal
role in counting acquisition. However, the mapping of representations is only one small possibility for
a fundamental link between the symbolic and approximate number systems (Gallistel & Gelman,
2000). Another source of continuity between the nonsymbolic and symbolic numerical systems could
be in the logical algorithms of the approximate number system and how those mechanisms could
provide structure for counting acquisition (Cantlon, Piantadosi, Ferrigno, Hughes, & Barnard, 2015;
Gallistel & Gelman, 1992; Gelman, 1990).

Gelman (1990) and Gallistel (Gallistel & Gelman, 1992; Gelman & Gallistel, 1978) proposed a set
of implicit logical principles inherent in nonsymbolic numerical estimation that structure the verbal
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counting routine during development. The principles include one-to-one correspondence between
each set item and the internal quantity representation, and sequential composition wherein the
internal quantity representation is assembled by first passing through smaller values en route to the
cardinal value. There is some support that “first principles” are primitive components of numerical
reasoning in human children and non-human primates. Evidence of spontaneous “protocounting”
behavior in non-human primates and evidence of pre-counting 1-to-1 correspondence judgments in
human children support the argument that nonsymbolic counting adheres to logical principles that
subsequently emerge in verbal counting.

One logical algorithm by which symbolic counting and approximate numerical systems are
similar is iterative comparison. A recent study found that non-human primates possess logic for
comparing quantities in sequence, item-by-item, that is algorithmically similar to human counting
(Cantlon et al., 2015). Monkeys were given the task of choosing between two food caches. Monkeys
saw one cache (Set 1) baited with some number of food items, one item at a time. Then, a second
cache (Set 2) was baited with food items, one at a time. At the point when the second set
approximately outnumbered the first set, monkeys spontaneously moved to choose the second set
even before it was completely baited. As shown in Figure 4, monkeys mostly switched when the
difference of Set 2-Set 1 was greater than zero—that is, when the second set began to outnumber the
first set. A series of control conditions showed that the monkeys’ switching behavior was based on
numerosity rather than duration or other cues. The monkeys’ behavior was tested against the
predictions of a counting-like process wherein every time an item was added to Set 2, the monkeys
(a) incremented their mental representation of the value of the set, (b) executed a mental comparison
between Set 1 and Set 2, (c) checked whether Set 2 was greater than or equal to Set 1, and (d)
terminated the comparison routine and committed to choose Set 2 when Set 2 was approximately
equal to or greater than Set 1. This “protocounting” model provided a valid explanation of the
monkeys’ behavior with the caveat that the monkeys’ representations of the numerical values of the
sets included scalar noise that resulted in approximate numerical representations rather than precise
representations. Thus, the monkeys used a noisy counting-like algorithm that is logically parallel to
human counting. The major implication of this research is that a set of core algorithmic operations,
rooted in nonverbal quantity representation, preceded the emergence of verbal counting in human
cultural evolution.

Figure 4. Probability of a switch behavior. Monkeys were increasingly likely to switch to Set 2 as the difference between Set 1 and
Set 2 approached zero and the value of Set 2 began to exceed that of Set 1. From (Cantlon et al., 2015).
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Another logical algorithm that emerges in children’s early quantitative behavior is one-to-one
correspondence (Izard, Streri, & Spelke, 2014; Mix, 2002). In Izard et al. (2014), two-and-a-half-year-
old children were presented with a set of finger puppets placed in one-to-one correspondence with
the branches of a tree toy. On each trial, the puppets were taken from the branches and placed in an
opaque box. Children were allowed to search the box to retrieve either all the puppets, or all but one
puppet. Children’s representation of the number of puppets in each condition was indexed by the
time they spent searching the box for more puppets. Sets of six items were presented and children
were unable to verbally count that high. The results showed that children could discriminate 5 vs. 6
using the one-to-one correspondence relation—they searched longer when all but 1 item had been
retrieved from the box compared to when all items were retrieved. Children failed to search longer
for the missing item when the one-to-one relation was either disrupted (e.g., by having more
branches than puppets) or less transparent (e.g., adding or subtracting items from the box). The
data show that children have some (albeit weak) routine for measuring numerical value using the
principle of one-to-one correspondence.

Evidence from cross-notation mapping studies with children who are in the process of acquiring
counting, and studies of the principles governing nonverbal quantitative judgments in animals and
infants suggest a structural relation between the logic of nonsymbolic number computation and
verbal counting. The structure of preverbal numerical cognition, and its logical algorithms, could
provide support for the acquisition of human counting and computation in children—an issue of
on-going study. The general argument in favor of a structural dependency between preverbal and
verbal counting logic is that nonverbal models and logical algorithms are necessary precursors in
order for children to interpret the verbal reference and learn to count (Gallistel & Gelman, 1992).
Further evidence is needed for a full explanation of the types of nonverbal models that children use
to make sense of counting and the causal relations among different representational systems (Carey,
2009). The principles of nonverbal numerical representation could provide structure for the acquisi-
tion of the verbal counting routine, even if those routines ultimately diverge into different mechan-
isms with different output representations. At a minimum, evidence of shared logical rules between
nonverbal “protocounting” and verbal counting suggests an evolutionary relation between the
systems.

Primitive neural processes provide the foundation for symbolic numerical
development in the brain

If there is a relation between symbolic and nonsymbolic numerical processes then there should be a
physical relation between those processes in the brain. The parietal lobe, and specifically the IPS, is widely
known to be involved in both symbolic and nonsymbolic number processing in human adults and
children (e.g., Ansari & Dhital, 2006; Ansari, Dhital, & Siong, 2006; Ansari, Garcia, Lucas, Hamon, &
Dhital, 2005, 2006; Cantlon et al., 2009; Eger, Sterzer, Russ, Giraud, & Kleinschmidt, 2003; Evans et al.,
2015; Menon, Rivera, White, Glover, & Reiss, 2000; Piazza et al., 2004, 2007; Pinel, Piazza, Le Bihan, &
Dehaene, 2004; Rivera, Reiss, Eckert, & Menon, 2005; Vogel, Goffin, & Ansari, 2015).

One approach for determining whether children’s primitive numerosity representations are a
source for symbolic numerical learning is to ask whether there is functional overlap between
nonverbal numerical representations and symbolic numerical representations in the brain during
development. Biological approaches to the symbol grounding problem propose that neural mechan-
isms that underlie a more primitive aspect of numerical cognition (i.e., approximate numerical
representations) will support the development of the more evolutionarily recent abilities (i.e.,
symbolic number). This would be consistent with the idea of exaptation in evolutionary theory
(Gould & Vrba, 1982) wherein neural processes take on new functions that are derived from their
prior functions (Dehaene & Cohen, 2007).

Over several studies researchers showed that the neural regions young children use for nonverbal
numerical processing substantially overlap with those they engage during symbolic numerical
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processing of digits and words (e.g., Cantlon et al., 2009; Holloway & Ansari, 2010; Lussier &
Cantlon, 2016). Functionally similar and anatomically overlapping patterns of IPS activation are
observed for numerical processing of digits, dots, and number words in children ranging in age from
4 to 8 years, even when activation from a variety of different control tasks is subtracted (Figure 5). In
addition, Holloway and Ansari (2010) reported functional overlap between symbolic (digits) and
nonsymbolic numerical responses in the IPS in 7- to 8-year-old children. Together these data show
neural continuity between the neural processes underlying nonverbal numerical cognition and those
of symbolic numerical cognition. The findings suggest that there is at least a functional relation
between these neural processes such that they occupy common substrates, and further suggest the
possibility of a developmental dependency relation wherein children construct formal numerical
concepts by drawing on the mechanisms of nonverbal numerical representation.

Additional evidence in support of a developmental relation between nonverbal numerical cognition
and symbolic number comes from research on individual differences in the brain and behavior
(Ansari, 2008; de Smedt, Noël, Gilmore, & Ansari, 2013; Halberda & Feigenson, 2008; van Marle,
Chu, Li, & Geary, 2014). If children’s approximate, nonverbal numerical representations are related to
their precise, symbolic numerical concepts, then their neural responses during approximation should
predict how well they learn symbolic number concepts. Although this has not yet been experimentally
tested, Bugden, Price, McLean, and Ansari (2012) showed that symbolic number-modulated activity in
the left IPS, which is also involved in processing nonsymbolic number, is related to arithmetic fluency
in 8–10-year-old children (controlling for general factors). There is also longitudinal evidence that
number-related activation in the left IPS from a cross-notation task predicts 4- to 8-year-old children’s
formal mathematics knowledge (controlling for general factors; Emerson & Cantlon, 2014). In addi-
tion, an IPS-based network involved in numerical approximation shows individual differences in
functional connectivity that predict young children’s mathematics knowledge (Emerson & Cantlon,
2012). Finally, the maturity of children’s neural responses in the left and right IPS during natural
viewing of educational videos is related to their mathematics knowledge, controlling for verbal
knowledge (Cantlon & Li, 2013). The relation between children’s neural maturity and mathematics
ability overlaps children’s neural activation to numerosity-to-digit comparisons in the IPS. Together
these studies suggest a relation between the developmental trajectories of primitive numerical mechan-
isms and symbolic numerical knowledge over development.

Claims of neural overlap between the symbolic and nonsymbolic number systems do not
imply that these systems are identical. The symbolic and nonsymbolic number systems are quite
distinct. As discussed earlier, one system is approximate whereas the other is precise. Also, one
system is partly built by language (symbolic) and the other system exists independently of
language (nonsymbolic). We should expect to see differences at the behavioral level in how
these systems develop, such as differences in the pace of their developmental trajectories.
Evidence for such differences comes from individual differences studies showing that the devel-
opmental trajectories of symbolic and nonsymbolic numerical ability are not correlated for all
tasks at all ages (de Smedt et al., 2013). Given the conceptual and computational differences

Figure 5. Human children engage the IPS during numerical tasks across a range of ages (from 4–8 years), tasks (Passive Viewing,
Matching, Ordinal Comparison, Referent Judgment, and Watching TV), and numerical notations (visual arrays of dots, Arabic
numerals, number words, and complex naturalistic input such as Sesame Street). Data are from (left to right): (Cantlon et al., 2006;
Emerson & Cantlon, 2012; 2014; Cantlon et al., 2009; Lussier & Cantlon, 2016; Cantlon & Li, 2013).
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between the symbolic and nonsymbolic number systems, we also should expect to see significant
differences between the neural representations of symbolic and nonsymbolic numbers throughout
the brain, especially as the symbolic system matures—and there is evidence for that too. Adults
show regions of non-overlap between symbolic and nonsymbolic numerical representation in the
intraparietal sulcus (Cohen Kadosh, Cohen Kadosh, Kaas, Henik, & Goebel, 2007) and through-
out the brain (Bulthé, de Smedt, & Op de Beeck, 2014). We should additionally expect to see
different patterns of functional connectivity between symbolic representations and the rest of the
brain compared to nonsymbolic representations because symbolic numbers are associated with
rote memorization procedures (e.g., arithmetic strategies), semantic information (e.g., phone
numbers), and cultural systems (e.g., calendars, games, music) that nonsymbolic number repre-
sentations are likely not. To date there has been no test of this last prediction.

Despite all of the potential to observe differences between symbolic and nonsymbolic numerical
systems in the brain, we see a significant degree of continuity in their neural representations
throughout development. At a minimum, the links between the numerical processes of the IPS in
monkeys and humans, and symbolic and nonsymbolic numerical cognition implicate an evolution-
ary relation between primitive and culturally recent cognition (Dehaene & Cohen, 2007). Thus far,
the neural evidence suggests that this evolutionary foundation provides input to children’s develop-
ing numerical concepts. These data align with the data from behavioral development described
earlier, which suggest a representational and logical relation between nonsymbolic numerical
representations and symbolic number concepts.

Uniquely human numerical processing

Research, like that described in the previous section, suggests that the evolutionarily recent ability to
represent symbolic number in humans is exapted from the more primitive ability to conceive of
numerical quantity nonsymbolically (Dehaene & Cohen, 2007; Gould & Vrba, 1982). However, adult
human numerical representations are unique and sophisticated beyond the primitive representations
of monkeys and the immature representations of pre-counting and pre-literate children. Adult
humans have exact ordinal representations of numbers, and they understand the logical properties
of numbers in ways that non-human animals and young children do not (Boysen & Hallberg, 2000;
Carey, 2009). For example, the successor function in verbal counting allows adults to recognize that
adding one item to a set yields a cardinal value of the next item in the count list. Young children take
years of numerical training to recognize the successor function of verbal counting (Carey, 2009;
Wynn, 1992) and non-human animals never spontaneously learn the successor function even after
years of numerical training (Biro & Matsuzawa, 1999, 2008; Murofushi, 1997; Tomonaga, 2008; but
see Pepperberg & Carey, 2012).

Evidence for how human brain function is unique compared to non-human primates’ and how
adult brain function is unique compared to children’s is extremely limited. However, some early
evidence suggests that numerical processing in humans engages unique neural substrates compared
to non-human primates. A recent fMRI study comparing neural activation to tone sequences in
monkeys and humans showed that both groups engaged the IPS during numerical processing of the
sequences but that inferior frontal cortex (BA 44/45) was engaged by humans to an extent not
observed non-human primates (Figure 6; Wang, Uhrig, Jarraya, & Dehaene, 2015). Adult humans
showed greater activation in regions of the inferior frontal gyrus than macaques when a novel
number of tones was presented following passive adaptation to tone sequences with a constant
number of tones. Adults further showed conjunctive activation in this same inferior frontal region
when a tone sequence varied in pitch pattern from a standard sequence whereas macaques did not
exhibit such activation. The authors relate these unique functions of the inferior frontal cortex in
humans to language evolution. Although previous research has shown that prefrontal regions
represent numerical categories in non-human primates (Nieder & Miller, 2003), these comparative
fMRI data suggest that prefrontal cortex could play a unique role in integrating numerical
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representations with sequence representations in humans—a function important for counting
acquisition and symbolic numerical cognition.

Language (i.e., number words) plays a key role in linking symbols to nonverbal representations of
number in humans, leading several researchers to argue that brain regions involved in processing semantic
and linguistic relations, such as the prefrontal cortex, should be involved in developing the association
between symbolic andnonsymbolic number representations (Cantlon et al., 2009;Nieder, 2009; Piazza et al.,
2007). Some support for this hypothesis comes from work with symbol-trained nonhuman primates.
Diester andNieder (2007) trainedmonkeys to associate Arabic numerals with their values in sets of objects.
Aftermonkeyswere trained to associate nonsymbolic dot arrayswith symbolic Arabic numerals, neurons in
both the IPS and prefrontal cortex represented the numerical values of the stimuli but the neurons in the
prefrontal cortex were unique from those in the IPS because they more often responded equally to
nonsymbolic and symbolic presentations of a particular numerical value, suggesting that associations
between the symbolic and nonsymbolic number emerge in the prefrontal cortex (Diester & Nieder, 2007).

Many human neuroimaging studies of numerical processing have found recruitment of frontal regions
in children to a degree that is not observed in adults (Ansari et al., 2005; Cantlon et al., 2009; Emerson &
Cantlon, 2012, 2014; Holloway&Ansari, 2010; Lussier &Cantlon, 2016; Lyons&Ansari, 2009; Rivera et al.,
2005). Three particular frontal loci emerge across neuroimaging studies of numerical cognition: a region of
the inferior frontal gyrus bordering insular cortex, dorsolateral prefrontal cortex, and a region of anterior
cingulate cortex. These regions tend to show stronger activation during numerical tasks compared to
control tasks, and stronger activation in children compared to adults. The functions of these regions, and
their role in symbolic vs. nonsymbolic numerical processing, and childhood vs. adulthood have multiple
interpretations. Nonetheless, these regions, particularly the inferior frontal and dorsolateral prefrontal loci,
are candidates for the language-based integrative functions of numerical processing that are unique to
humans (Bookheimer, 2002; Vigneau et al., 2006).

Here we provide a summary of patterns of activation observed across fMRI studies of numerical
development in symbolic vs. nonsymbolic tasks and in children vs. adults. We used meta-analytic
tools to distill a pattern of cortical activation across 14 published neuroimaging studies of basic
numerical processing in children. We discuss the patterns of activation observed between age groups
and numerical notations as they relate to hypotheses about the functional demands of symbolic
numerical cognition.

We identified 18 published empirical articles that tested basic numerical processing in children
(only comparison or passive viewing tasks were included; see Table 1). The articles were identified
using literature searches and cited reference searches in Web of Science. Several additional articles

Figure 6. Monkeys (top) and humans (bottom) were tested during fMRI while they passively listened to sequences of tones that
typically had the same number and pitch pattern. When deviant stimuli were presented monkeys and humans showed neural
responses to the numerical changes (red) in the IPS and to pattern changes (green) in the IFG but only humans showed neural
responses to numerical deviants in the IFG, overlapping IFG regions that responded to pattern changes (yellow). From Wang et al.
(2015).
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that originally were identified by our search ultimately were excluded because they were written in a
foreign language (n = 2, Russian: Varga, Pavlova, & Nosova, 2008; German: Krick et al., 2015),
focused on a special population (children born prematurely, n = 1 Starke et al., 2013), reported
results that were restricted by either another task or an anatomical mask (n = 2, Berteletti, Man, &
Booth, 2014; Krinzinger et al., 2011), or had stimuli that were ambiguously symbolic or nonsymbolic
(fingers; n = 1, Kaufmann et al., 2008). For each of the 14 included studies, we extracted the peak
coordinates from all whole-brain analyses that localized numerical processing regions. This resulted
in 163 sets of coordinates. All coordinates were converted to Talairach space. We included both the
child and adult data in our analyses. Peaks that corresponded to whole-brain analyses that showed a
relation between numerical processing and either age or a behaviorally obtained measure of
numerical processing (e.g., numerical acuity or math achievement) were not included in the meta-
analysis (peaks from n = 4 articles), but were consulted for consistency in interpreting the results of
the analysis.

We conducted an activation likelihood estimation (ALE) analysis on all 163 points using
GingerALE software (version 2.3.6, Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012; Eickhoff et al.,
2009; Turkeltaub et al., 2012). An ALE takes foci from various studies as input and calculates the
likelihood of a particular region being recruited across studies. First, Gaussian blurs were applied to
the foci such that studies with larger sample sizes were blurred with taller and tighter Gaussian
functions, indicating greater confidence in those points than points derived from smaller samples.
Modeled activation maps were then calculated by finding the maximum across the foci’s Gaussians
(Turkeltaub et al., 2012). The union of these modeled activation maps is the final ALE image. The
probability of finding each value in a map is then calculated by making a histogram of the values in
the modeled activation map and dividing by the number of voxels in the modeled activation map.
The likelihood maps presented here were set to an uncorrected minimum thresholds of p < 0.01
(Figure 7, dark colors) and p < 0.001 (Figure 7, light colors) before applying a cluster correction to
obtain a cluster level threshold of p < 0.05. Foci that were identified in their source publication by
taking the conjunction of the neural response to symbolic and nonsymbolic stimuli were included in
both the symbolic and nonsymbolic maps because they indicate a significant response to both types

Figure 7. Meta-analytic summary of developmental neuroimaging studies. ALE results for adults (green) and children (pink) for
symbolic (A) and nonsymbolic (B) numerical stimuli. ALE results were computed using GingerALE with an applied cluster threshold
of p < 0.05 and are displayed on the 2 mm Colin brain in Talairach space downloaded from BrainMap (http://www.brainmap.org/
ale/). Brighter colors show clusters that survive cluster correction at a voxel-wise error rate of p < 0.001 and darker colors indicate
clusters that survive cluster correction at a voxel-wise error rate of p < 0.01. For comparison, outlined areas represent ROIs from a
symbolic to nonsymbolic numerical comparison task conducted with adults (Emerson & Cantlon, 2012; 2014; Number > Faces,
Shapes, & Words). IPS = intraparietal sulcus, ACC = anterior cingulate cortex, IFG = inferior frontal gyrus.
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of notation. Activation likelihood maps were calculated separately for children’s symbolic number
processing (101 foci from 11 articles; Figure 7A, pink), adults’ symbolic number processing (27 foci
from 6 articles; Figure 7A, green), children’s nonsymbolic number (36 foci from 4 articles; Figure 7B,
pink), and adults’ nonsymbolic number (31 foci from 5 articles; Figure 7B, green).

As seen in Figure 7, children and adults engage common regions of the right IPS for symbolic and
nonsymbolic processing and right IFG and insula for nonsymbolic processing, but show distinct
patterns of recruitment in left IPS, DLPFC, and ACC. Children show unique recruitment of DLPFC
across symbolic and nonsymbolic tasks. In contrast, adults show unique recruitment of left IPS
(Table 2). This is in line with previous work that suggests that number processing in the right IPS
matures earlier than the left IPS and that the development of the left IPS may be more related to the
acquisition of symbolic number than the right IPS (Ansari & Dhital, 2006; Cantlon et al., 2006;
Cantlon & Li, 2013; Emerson & Cantlon, 2014; Hyde et al., 2010; Rivera et al., 2005; Rosenberg-Lee,
Barth, & Menon, 2011; Vogel et al., 2015).

For comparison, Figure 7 shows in black the outlines of regions activated by adults during a
symbolic-to-nonsymbolic numerical matching task (Emerson & Cantlon, 2014; Numbers > Faces,
Shapes, & Words, p < 0.05, corrected). In this task, subjects had to compare an Arabic numeral to an
array of dots and press a button if they were the same value. The comparison shows that the patterns

Table 2. Talairach coordinates and maximum ALE values for regions of the brain consistently recruited during number processing
across multiple studies.

Region Hemisphere Max ALE Value

TAL coordinates

Voxel-Wise Error Rate Family-Wise Error Ratex y z

Adults: Symbolic
Parietal Cortex Left 0.009 −30 −46 40 p < 0.01 p < 0.05

0.008 −32 −56 36 p < 0.01 p < 0.05
0.007 −32 −38 44 p < 0.01 p < 0.05

Right 0.008 30 −56 36 p < 0.01 p < 0.05
0.008 36 −56 26 p < 0.01 p < 0.05
0.007 32 −44 40 p < 0.01 p < 0.05

Children: Symbolic
Anterior Cingulate 0.013 4 10 48 p < 0.001 p < 0.05

0.012 6 18 44 p < 0.001 p < 0.05
Insula Right 0.019 34 18 4 p < 0.001 p < 0.05

0.016 50 6 14 p < 0.01 p < 0.05
0.008 40 12 16 p < 0.01 p < 0.05

Frontal Cortex Right 0.024 40 2 32 p < 0.001 p < 0.05
Parietal Cortex Right 0.016 38 −46 42 p < 0.01 p < 0.05

0.009 30 −54 40 p < 0.01 p < 0.05
0.007 40 −44 54 p < 0.01 p < 0.05

Adults: Nonsymbolic
Anterior Cingulate 0.015 −2 18 38 p < 0.001 p < 0.05

0.006 4 24 46 p < 0.01 p < 0.05
Insula Right 0.008 30 22 6 p < 0.01 p < 0.05

0.008 32 18 −2 p < 0.01 p < 0.05
Parietal Cortex Left 0.014 −28 −48 42 p < 0.001 p < 0.05

0.009 −32 −56 36 p < 0.001 p < 0.05
0.008 −24 −60 48 p < 0.01 p < 0.05

Right 0.009 30 −48 36 p < 0.01 p < 0.05
0.009 30 −54 36 p < 0.01 p < 0.05
0.008 36 −56 26 p < 0.01 p < 0.05
0.006 32 −48 46 p < 0.01 p < 0.05

Children: Nonsymbolic
Insula Right 0.014 36 18 4 p < 0.001 p < 0.05
Frontal Cortex Right 0.016 42 2 30 p < 0.001 p < 0.05

0.009 50 8 22 p < 0.01 p < 0.05
0.009 50 6 14 p < 0.01 p < 0.05

Parietal Cortex Right 0.012 36 −46 38 p < 0.001 p < 0.05
0.008 30 −54 40 p < 0.01 p < 0.05
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of activation distilled from the meta-analysis largely overlap the mature, adult pattern of activation
from a symbolic-to-nonsymbolic matching task. Across the studies in the meta-analysis, which
largely only tested subjects on within-notation tasks (either symbolic or nonsymbolic, not both)
children activated regions of DLPFC that adults did not (Figure 7, pink regions vs. green regions). In
contrast, in the symbolic-to-nonsymbolic task shown in black outline, adults activated similar
DLPFC regions to children. This suggests that regions of DLPFC that are recruited for symbolic-
to-nonsymbolic matching tasks in adults are more likely to be recruited by children than adults
during tasks that present a single numerical notation. A second important pattern, is that children
display slightly greater recruitment of frontal regions for symbolic number than for nonsymbolic
number. This suggests that the regions of the frontal cortex may be particularly important for
symbolic number processing during childhood.

It is not the case, however, that adults do not recruit these DLPFC regions at all, nor is it the case
that these regions are never involved in nonsymbolic numerical processing. For instance, we see
engagement of right inferior frontal cortex for nonsymbolic number processing in adults. In
addition, some studies have reported greater activation for adults than for children at these frontal
loci (Ansari et al., 2005; Emerson & Cantlon, 2014; Haist, Wazny, Toomarian, & Adamo, 2015;
Holloway & Ansari, 2010). Thus, the patterns presented in Figure 7 represent the common findings
across studies, not the only findings. However, distilling across studies, adults are less likely than
children to recruit DLPFC regions during numerical tasks.

As described above, one hypothesis for the function of frontal regions in numerical processing is
the language-based integration of symbolic with nonsymbolic number representations (e.g., Cantlon
et al., 2009; Nieder, 2009; Piazza et al., 2007). Inferior frontal and dorsolateral prefrontal cortex are
thought to play a unique role in grounding symbolic number in approximate, nonverbal representa-
tions. For example, Nieder (2009) suggested that lateral prefrontal regions link neurons encoding the
shapes of the numerical symbols in frontal cortex to the neurons encoding the nonsymbolic
representations of quantity in the IPS. This hypothesis predicts limited recruitment of the prefrontal
cortex for nonsymbolic number in cases where there is no reason to map nonsymbolic number to
symbolic number. This hypothesis also predicts that children who have immature representations of
symbolic numbers should show different degrees of engagement with frontal regions compared to
adults. The data presented so far are consistent with these predictions.

A second possibility is that the role of frontal regions in numerical processing is domain-general
cognitive control, and perhaps not specifically language-based. The hypothesis is that IFG and
DLPFC activations reflect activities in the semantic and working memory circuits of frontal cortex
(Ansari, 2008; Houdé, Rossi, Lubin, & Joliot, 2010; Lussier & Cantlon, 2016). Symbolic numerical
representations require a level of semantic interpretation that is not required by the physical
nonsymbolic representation of number—namely, a symbolic number has to be decoded from its
arbitrary representation. As mentioned earlier, symbolic numbers are also unique compared to
nonsymbolic representations because they have precise cardinal and ordinal representations in
long-term memory and, unlike nonsymbolic quantities, are explicitly associated with other ordered
semantic systems from human culture. Thus, symbolic numbers likely place unique demands on the
engagement of semantic memory compared to nonsymbolic numbers. The patterns of frontal
activation observed in numerical tasks are similar to patterns observed from the comparison of
non-numerical semantic stimuli (Lussier & Cantlon, 2016) and are observed in studies of semantic
memory that do not test numerical representation (e.g., Thompson-Schill, D’Esposito, Aguirre, &
Farah, 1997; Wagner, Paré-Blagoev, Clark, & Poldrack, 2001). The existing data summarized in
Figure 7 are thus also consistent with the domain-general hypothesis that the IFG/insula, DLPFC,
and ACC mediate the control of information in memory.

The IFG/insula and ACC may also play a more general role in numerical cognition even beyond
semantic processing and working memory. Those regions show neural responses that are modulated
by subjects’ response times during comparisons of numerical and non-numerical stimuli (Emerson
& Cantlon, 2012, 2014). Emerson and Cantlon (2012) found that activation levels in the IFG and
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ACC were modulated by the duration of subjects’ trial-by-trial RTs during face, number, word, and
shape matching tasks (Figure 8). Longer RTs led to greater activation in those regions. RT is related
both to the amount of cognitive effort required to resolve a trial, decision time, and the planning of
the motor response. General task functions could account for the relation between RT and activation
levels in the IFG/insula and ACC across tasks. Importantly, number-related activation in the IPS did
not overlap task-general RT-related activation. Task-general RT-related activation in precentral and
postcentral regions is likely related to motor planning and it is distinct from number-related IPS
activation.

In summary, the IPS is recruited during numerical tasks across species, stages of human devel-
opment, and whether the task is symbolic or nonsymbolic. Humans are unique from other animals
in their capacity for symbolic numerical representation and there is some evidence from comparative
fMRI studies that those unique features of human cognition are mediated by prefrontal regions.
Humans are more likely than non-human primates to engage prefrontal regions during numerical
and ordinal tasks. There are a number of attributes that distinguish the task of understanding
symbolic numbers from the task of understanding nonsymbolic numbers including symbol decoding
(language) and access to precise long-term memory representations (memory). The extent to which
these unique operations are accomplished by frontal cortex in the service of numerical processing is
an open question. Children’s unique recruitment of frontal regions compared to adults’ indicates
that additional cognitive resources are needed to represent numerical stimuli in childhood compared
to adulthood—the question is whether those extra resources are related to language, memory, or task
execution.

Conclusion

Fundamental representational and logical abilities that promote human numerical reasoning have likely
been in place formillions of years. The representation of number as an abstract property, the ability to order
and perform arithmetic over those representations, and the ability to use sequential and iterative logic
during quantitative judgments are primitive mechanisms in the sense that they are shared between human
and non-human primates and develop early in human children. These primitive mechanisms are thought
to be important for the development of symbolic number concepts in humans because they share
important conceptual and structural properties with human counting and arithmetic. Some evidence
indicates that children draw on primitive nonsymbolic representations during counting acquisition. The
neural mechanisms that accomplish basic numerical functions in early childhood converge with

Figure 8. Regions that are modulated by trial response times (RT) in a matching task for faces, numbers, shapes, and words (RT+ as a
parametric modulator), show greater amplitudes to number stimuli than control stimuli (Numbers > Faces, Shapes, and Words), and
their overlap (FDR q < .05). Data are from (Emerson & Cantlon, 2012).
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mechanisms children recruit during early-developing symbolic numerical operations. Human children
must go beyond the primitive mechanisms to achieve a mature representation of symbolic numbers with
rich semantic meanings. This requires uniquely human cognitive and neural mechanisms that can support
interactions between the primitive mechanisms and human language and memory systems. At the neural
level, regions of prefrontal cortex seem likely to serve these functions, but we currently lack a satisfying
cognitive description of the computations carried out by those regions. Thus, current evidence indicates
that children hijack some cognitive and neural functions from the evolutionarily primitive, analog
numerical system to engage with systems of symbolic numerical thought during development—but the
deeper nature of the interactions between the nonsymbolic and symbolic numerical systems in children’s
minds and brains remains unknown.
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